Improving Tropical Cyclogenesis Statistical Model Forecasts through the Application of a Neural Network Classifier

نویسندگان

  • Christopher C. Hennon
  • Caren Marzban
  • Jay S. Hobgood
چکیده

A binary neural network classifier is evaluated against linear discriminant analysis within the framework of a statistical model for forecasting tropical cyclogenesis (TCG). A dataset consisting of potential developing cloud clusters which formed during the 1998-2001 Atlantic hurricane seasons is used in conjunction with eight large-scale predictors of TCG. Each predictor value is calculated at analysis time. The model yields a probability forecast for genesis at 6 hour intervals out to 48 hours prior to the event. Results consistently show that the neural network classifier outperforms linear discriminant analysis on all performance measures examined, including probability of detection, false alarm rate, Heidke Skill Score, and forecast reliability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Car paint thickness control using artificial neural network and regression method

Struggling in world's competitive markets, industries are attempting to upgrade their technologies aiming at improving the quality and minimizing the waste and cutting the price. Industry tries to develop their technology in order to improve quality via proactive quality control. This paper studies the possible paint quality in order to reduce the defects through neural network techniques in au...

متن کامل

الگوسازی و پیش‌بینی مصرف انرژی بخش حمل و نقل ایران: کاربردی از الگوهای هوش مصنوعی

Ever-increasing dependence of human life on energy has made this factor play a critically crucial role either potentially or actively in the functions of various economic sectors of countries. Therefore, the people in charge of any country should try to make exact forecasting of energy consumption and make correct planning about its consumption in a way to optimally control supply-demand parame...

متن کامل

Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator

This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004